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ABSTRACT: Computational theories of structure from motion [Ullman, 19791 and stereo vision
[Marr and Poggio. 1979] only specify the computation of three-dimensional surface information at
special points in the image. Yet, the visual perception is clearly of complete surfaces. In order to
account for this, a computational theory of the interpolation of surfaces from visual information is
presented.

The problem is constrained by the fact that the surface must agree with the information from
stereo or motion correspondence, and not vary radically between these points. Using the image
irradiance equation [Horn, 1977), an explicit form of this surface consislency constraint can be derived
[Gi imson, 1981c).

To determine which of two possible surfaces is more consistent with the surface consistency
constraint, one must be able to compare the two surfaces. To do this, a functional from the space
of functions to the real numbers is required. In this way, the surface most consistent with the visual
information will be that which minimizes the functional. To ensure that the functional has a unique
minimal surface, conditions on the form of the functional arc derived. In particular, if the finctional
is a complete semi-norm which satisfies the parallelogram law, or the space of functions is a semi-
Hilbert space and the functional is a semi-inner product, then there is a unique (to within an element
of tie null space of the functional) surface which is most consistent with the visual information.

It can be shown, based on the above conditions plus a condition of rotational symmetry, that
there is a vector space of possible functionals which measure surface consistency, this vector space

!-j being spanned by the functional of quadratic variation and the functional of square Laplacian [Brady
and Horn, 19811. Arguments based on the null spaces of the respective functionals are used to justify

*q the choice of the quadratic variation as the optimal functional.
'4/ Algorithms for computing the surface which minimizes quadratic variation in the case of exact

surface interpolation and in the case of surface approximation are outlined and illustrated on a series
of synthetic and actual surface interpolation examples.
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1. Introduction

Although our world has three spatial dimensions, the projection of light rays onto the retina

presents our visual system with an image of the world that is inherently two-dimensional. We must

use such images to physically interact with this three-dimensional world, even in situations new to

us, or with objects unknown to us. That we do so easily implies that one of the functions of the

human visual system is to reconstruct a three-dimensional representation of the world from its two-

dimensional projection onto our eyes.

Methods that could be used to effect this three-dimensional reconstruction include stereo vision

[Marr and Poggio, 1979; Grimson, 1980, 1981a; Mayhew and Frisby, 19811 and structure from motion

[Ullman, 1979a]. Both of these methods may be considered as correspondence techniques, since

they rely on establishing a correspondence between identical items in different images, and using the

difference in projection of these items to determine surface shape. That is, correspondence methods

compute surface information by:

(1) Identifying a location in the physical scene in one image;

(2) Identifying the corresponding location in a second image; either a second image taken from a

different viewpoint in space (stereo) or a second image taken from a different viewpoint in time

(structure from motion); and

(3) Computing a three-dimensional surface value, representing the distance of the point relative to

some base point, based on the difference in the positions of the two corresponding points in the

images.

Current computational theories of these processes [Marr and Poggio, 1979; Mayhew and Frisby,

1981; Ullman, 1979a] argue that the correspondence process cannot take place at all points in an

image. Rather, the first stage of the correspondence process is to derive a symbolic description of

points in the image at which the irradiance undergoes a significant change [Marr and Hildreth, 19801.

This symbolic representation (called the primal sketch [Marr, 1976; Marr and Hildreth, 19801) forms

the input to the second stage of the process in which the actual correspondence is computed. As a

consequence of the form of the input, the correspondence process can compute explicit surface infor-

mation only at scattered points in the image. Yet our perception is clearly of complete surfaces. (For

example, in Figure 1, a sparse random dot stereogram yields the vivid peception of a square floating

in space above a bakground pianC. raither than a collection of (lot% stspiendcd in space.) Ihe problem

I&I I I ]" J " -....
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Figure 1. A Spam~ Random Dot Pattern. Although the density of dots is very small, the perception
* obtained upon fusing this pattern is one of two disjoint planes, rather than dots isolated in depth.

to be addressed in this paper is that of computing complete surface representations, by interpolating

an initial representation consisting of sparse surface values.

We will examine this surface interpolation problem at two levels. The first level is to consider

the strictly mathematical question of surface reconstruction, independent of its relevance to the

human visual system. Suppose one is given a visual process which determines surface information

* at points corresponding to relevant changes in the images. In general, there will be many possible

surfaces consistent with these initial' surface points. For example, consider the boundary conditions

provided by a circular arc, along which the depth is constant. The possible surface consistent with

these known points include a fiat disc, a sphere and even thec highly convoluted surface formed by a

radial sine function (sce Figure 3). Ilow do we distinguish the correct one? Mathematically, we need

to be able to compare two possible surfaces, in order to determine which is "better". This can be done

by defining a functional 0 from the space of surfaces to the real numbers, so that comparing surfaces

can be accomplished by comparing corresponding real numbers. P~rovided EO(f) < 0(g) whenever

surface f is "better" than surface g. the "bcst" surface to fit through the known points is that which

miinimizes e. 'thecre are two problems to solve here: (1) What does it mean for f to be "better" than

g? and (2) Undcr what condti Pan e des a unique "best" surface exist?

obane pn uig hspatr i neo wodsoitpans ate ta ot slae dph
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Once these questions have been answered and an appropriate functional has been derived, we

can turn to the second level, which is to consider a specific algorithm for finding the surface that

optimizes the functional. Because our intent is to consider models for the interpolation process as it

occurs in the human visual system, we will restrict our attention to biologically feasible algorithms

[Ullman, 1979b; Grimson, 1981b].

The motivation for considering the interpolation problem first mathematically, independent of

the specifics of the human system, and then algorithmically, incorporating specific biological con-

straints, is based on the assumption that one can consider the visual system as a symbol manipulation

process [Marr 1976, 1981; Marr and Poggio, 1977]. This implies that the meaning of the symbols being

manipulated can be distinguished from the physical embodiment of those symbols. Hence, one can

deal with the mathematical consideration of the information processing which is occurring, independ-

ent of the implementation of that processing (whether in transistors or neurons). The rationale for

this view lies in the belief that any computational theory should address the fundamental questions

of the information processing necessary to perform the task, and that such computational theories

are independent, to a large extent, of the method used to compute them. The initial goal is thus to

determine computational constraints on the interpolation problem, based on the input and output

representations of the process, and based on the structure of the computation required to transfbrm

one representation into the other. Note that a computational theory of the information process-

ing is applicable both to the human visual system, and to applications areas (such as high-altitude

photomapping, hand-eye coordination systems, industrial robotics, and inspection of manufactured

parts) where it is useful to create a complete specification of surface shape.

While we shall initially concentrate on the mathematical aspects of visual surface interpolation,

the problem is not completely isolated from the human visual system. If we view the human early

visual system as a symbolic manipulator, we can consider visual processing as a series of transfor-

mations from one representation to another [Marr, 1976, 1981]. In particular, three stages can be

identified (see Figure 2). From the images, one transforms to a description, called the primal sketch,

of those locations at which the image irradiances change. Next, primal sketch descriptions of several

images are matched, either by the stereo or motion computation, to obtain a description of surface

information at the zero-crossings. 'Ibis representation is called the raw 2j!) sketch. Finally, the raw

2 j I) sketch is interpolated to obtain complete surface descriptions, called the full 2 1) sketch IMarr,
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1978; Marr and Nishihara, 19781. The first two stages have been considered elsewhere [Mart, 1976;

Ma and Hildreth, 1980; Hildreth, 1980; Mart and Poggio, 1979; Grimson, 1980, 1981a, 1981b;

Ullman, 1979a]. It is the final stage - the problem of surface interpolation - that is considered here.

to obtain complete surface descriptions, called the full 2 J D Sketch [MarT, 1978; Marr and Nishihara,

1978J. The first two stages have been considered elsewhere [Marr, 1976: Man and Hildreth, 1980;

Hildreth, 1980; Marr and Poggio, 1979; Grimson, 1980, 1981a, 1981b; Ullman, 1979a]. It is the final

stage - the problem of surface interpolation - that is considered here.

The important point is that the form of the input and output representations can influence the

design of the transformation. Here, we shall assume that the input representation consists of explicit

surface information, such as distance or relative distance, along the zero-crossings of the convolved

image (these terms will be given technical definitions in Section 2). The output representation will be

a complete specification of surface in formation, where by complete, we mean that an explicit distance

value should be computed at every point on some grid representation of the scene. Our main concern

in this paper is with the computational constraints needed to transform the input representation into

the output representation.

Although surface values at all points of the image are important, there is another aspect of
surface information which should also be made explicit in the output representation. This is the set of

discontinuities in surfaces: the occluding contours, both subjective and objective. Marr [19781 argues

that the 2 1-D sketch should be a viewer-centered representation which includes both explicit surface

information, such as depth and surface orientation, and explicit contours of surface discontinuities. In

this paper, the concentration is on the problem of creating explicit surface information at all points

of the surface. The question of surface discontinuities will be outlined, and possible algorithms

suggested, but an implementation of this stage has not been completed.

2. Consequence of the Correspondence Problem

We indicated above that we would concentrate on correspondence methods which could

effect the three-dimensional surface reconstniction; stereopsis [Marr, 1980; Marr and Poggio, 1979:

Grimson, 1980. 1981a and structure from motion fliIman, 1979a]. 'he three main steps of the

correspondence problem arc: (1) identify a location in the physical scene in one image: (2) identify

the corresponding location in a second image: either a scond image taken from a different viewpoint
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CONSEQUENCE OF THE CORRESPONDENCE PROBLEM 6

(stereo vision), or a second image taken at a later point in time (motion); and (3) compute a three-

dimensional surface value, representing the distance of the point relative to some base point, based on

the difference in the positions of the two corresponding points in the images.

If one can identify a location beyond doubt in the two images, then the correspondence problem

is trivial. It can be demonstrated, however, that both the stereo computation and the motion computa-

tion can take place on very primitive descriptions of the images [Julesz, 1960; Ullman, 1979a]. As

a consequence, the difficulty of the problem, for human vision, lies in the correspondence problem

- which item in one image matches which item in the other. The reason for this is that for any primi-

tive element from one description, there are liable to be many possible matching elements from the

other description. This is especially true if image irradiance values are used as the basic descriptions.

Consider an image of a matte-painted wall with uniform illumination. Given a small element of that

wall from one image, it is virtually impossible to distinguish which small element from the other view

matches it. On the other hand, if there is a scratch or texture marking on the wall, it is likely that such

a location can be distinguished in the two views. This suggests that the representation upon which

the correspondence operation takes place should reflect those positions in an image at which some

physical property of the underlying surface is changing. This representation is called the primal sketch

[Marr. 1976; Marr and Hildreth, 1980].

Marr and Hildrcth [1980. also Hildreth, 1980] have refined the precceding intuitive argument

into more rigorous computational arguments, in conjunction with evidence from neurophysiology and

psychophysics. They argue that the primal sketch representation is computed by determining those

locations in an image at which the corresponding surface location undergoes a change in one of its

physical properties, for example, reflectivity, surface orientation, texture or surface material. Such

changes will correspond to a step change in image irradiance, at some scale. There are many ways of

detecting the irradiance changes. Marr and I lildreth argue on various grounds for using the following

scheme:

(1) Con volve the image with a set of filters given by the laplacian applied to a Gaussian,

V2G(r, 0) =(2 22~

where o is a constant determined from psvchop h.'sical data.
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(2) Locate all non-trivial zero-crossings in the convolved irradiances. A non-trivial zero-crossing is a

point at which the convolved irradiance values change from positive to negative, or vice versa.

These zero-crossings form the basic representation upon which the later visual processing takes place.

Given this representation of the images, the correspondence problem can now be solved. Both

Ullman's [1979a] theory of motion perception and Marr and Poggio's [19791 theory of stereo vision

perform this computation on such primal sketch descriptions. As a consequence, explicit three-

dimensional surface information (such as distance, or surface orientation) can be computed only at

points corresponding to zero-crossings in the primal sketch. This would yield a sparse surface repre-

sentation. Yet clearly, our perception is of complete surfaces (see for example Figure 1). In addition,

a "nice" boundary is found for the central square. This implies that once the correspondence problem

is solved, either by the stereo computation or by the motion computation, an interpolation must

be performed between the surface values given at the zero-crossings, to obtain a complete surface

description, and surface discontinuities should be explicitly demarked.

3. The Surface Consistency Constraint

We now turn to the heart of the matter, the computational constraints involved in the process

of creating complete surface specifications, by interpolating between known points. We are given

as basic input to the interpolation process, the zero-crossings of a convolved image, with depth infor-

ination computed along these zero-crossing contours. Suppose one were to attempt to construct a

complete surface description based only on the surface information known along the zero-crossings.

An infinite number of surfaces would consistently fit the boundary conditions provided by these sur-

face values. Yet there must be some way of deciding which surface, or at least which small familyI
of surfaces, could give rise to the zero-crossing descriptions. This means that there must be some

additional information available from the visual process which, when taken into account, will identify

a class of nearly indistinguishable surfaces that represent the visible surfaces of the scene.

In order to determine what information is available from the visual process, one must first

carefully consider the process by which the zero-crossing contours are generated. The Marr-Hildreth

theory of edge detection [Mart and Ilildreth. 1980: Ilildreth, 1980] relics on the fact that sudden

changes in the reflectance of a surface, for example, caused by surface scratches or texture markings,

will give rise to icro-crossings in the convohdc image. Sudden or sharp changes in orientation or
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shape of the surface will under most circumstances also give rise to zero-crossings. This fact can be

used to constrain the possible shapes of surfaces which could give rise to particular surface values

along zero-crossing contours.

We illustrate the basic argument with an example. Suppose one is given a closed zero-crossing

contour, within which there are no other zero-crossings. An example would be a circular contour,

along which the depth is constant. There are many surfaces which could fit this set of boundary

conditions (see Figure 3). One such surface is a flat disk. However, one could also fit other smooth

surfaces to this set of boundary conditions. For example, the highly convoluted surface formed

by sin (,I ) would be consistent with the known disparity values. Yet in principle, such a

rapidly varying surface should give rise to other zero-crossings. This follows from the observation that

if the surface orientation undergoes a periodic variation, then it is likely that the irradiance values

will also undergo such a variation. Since the only zero-crossings are at the borders of the object, this

implies that the surface sin ( z ) + 2) is not a valid representative surface for this set of boundary

conditions.

Hence, the hypothesis is that the set of zero-crossing contours contains implicit information

about the surface as well as explicit information. If one can determine a set of conditions on the

surface shape that cause inflections in the irradiance values, then one may be able to determine a

likely surface structure, given a set of boundary conditions along the zero-crossing contours.

3.1 No News is Good News

In general any one of a multitude of widely varying surfaces could fit the boundary conditions

imposed along the zero-crossings. To be completely consistent with the imaging process, however,

such surfaces must meet both explicit conditions and implicit conditions. The explicit conditions

are given by the depth or surface orientation values along the zero-crossing contours. The implicit

conditions arc that the surface must not impose any zero-crossing contours other than those which

appear in the convolved image. This implicit condition leads to the surjbce consisicncO' constraint,

namely:

The absemnce or mero-crossings constrains the possihle surface shapes.

Just as the presence of a /cro-crossing tells us that some physical property is changing at a given

location, the abscntc of a /cro-crossing tells us the opposite. that no physical property is changing,
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Figure 3. Possible Surfaces Fitting Depth Values at Zero-Crossings. Given boundary conditions
of a circular zero-crossing contour, along which the depth is constant, there are malny possible
surfaces which could fit the known depth points. Two examples are a flat disk, and tie highly
convoluted surface formed by sin ( X2 + Y2). shown here.

2.-

and in particular that the surface topography is not changing in a radical manner. We informally refer

to this constraint as no news is good news, since it says that the surface cannot change radically without

informing us of this fact by means of zero-crossings.

In order to make. explicit any constraints on the shape of the surface for locations in the image

not associated with a zero-crossing, one must carefully examine the image formation process. Many

factors are involved in the formation of image irradiances. As a consequence, changes in any of those

factors can cause a change in the image irradianccs, and hence a zero-crossing in the convolved image.

For example. a change in surface material can correspond to a change in albedo, and hence to a zero-

crossing in the convolvcd image, a discontinuity in depth can correspond to a change in the illumlina-

lion striking the surface, and hence to a zero-crossing: and a discontinuity in surface orientatioin can

correspond to a change in the imouunt of illumination reflected toward the %iewcr. and hence to a

n u i n I -"" " " nn , ...o-
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zero-crossing. We are interested in showing that the inverse is also true - in particular, that in regions

in which the illumination and albedo are roughly constant, the absence of a zero-crossing implies that

the surface shape cannot be changing in a radical manner.

The basic result, corresponding to the intuitive argument of Figure 3, is that the probability of a

zero-crossing occurring in regions where the illumination is roughly constant and the surface material

does not change is a monotonic function of the variation in the orientation of the surface normal.

(An analytic proof may be found in Grimson [1981c].) This provides a constraint on the possible

surfaces that could be interpolated through a set of known points, and is referred to as the surface

* consistency constraint. It means that the probability of a zero-crossing increases as the variation in

surface orientation increases. By inverting this argument, the best surface to fit the known data is that

which minimizes the variation in surface orientation since this surface is most consistent with the zero-

crossings in the convolved image.

4. The Computational Problem

We are now ready to consider the computational problem associated with the task of construct-

ing complete surface specifications consistent with the information contained in the zero-crossings.

The modules of early visual processing, such as stereo or structure-from-motion, provide explicit

information about the shapes of the surfaces at specific locations in the images, corresponding to the

zero-crossings of the convolved images I he surface consistency constraint indicates implicit informa-

tion about the shapes of the stirfac7s between the zero-crossings, stating that between known depth

values, the sUrface cannot change in a radical manner, since such changes would usually give rise

to additional .ero-Lrossings. "hese two factors will now be combined, to obtain a complete surface

specification.

4.1 Using The Surface Consistency Constraint

Suppose we are given a set of known depth points. We want a method for finding a surface

to fit through these points that is "most consistent" with the surface consistency constraint. We will

find the most consistent surface in two ways. In the siirfrice interpolation problem we construct a

surface that ex;ictly fi!s the wt of kown poinis. The problem can be relaxed somewhat into a .urface
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approximation problem, by only requiring that the surface approximately fit the known data and be

smooth in some sense.

Given the initial boundary conditions of the known depth values along the zero-crossing con-

tours, there is an infinite set of possible surfaces that fit through those points. We need to be able to

compare members of this set of all possible surfaces fitting through those points, to determine which

surface is more consistent. If we can do this, then the "most consistent" surface can be found by com-

paring all possible surfaces. A traditional method for comparing surfaces is to assign a real number

to each surface. Then, in order to compare the surfaces, one need only compare the corresponding

real numbers. The assignment of real numbers to possible surfaces is accomplished by defining a

functional, mapping the space of possible surfaces into the real numbers, E:X -4 R. This functional

should be such that the more consistent the surface, the smaller the real number assigned to it. In

order to satisfy the surface consistency constraint, the functional should measure variation in surface

orientation. In this case, the most consistent surface will be the surface that is minimal under the

functional. (For further details and background information about the use of functionals is, see, for

example. Rudin [19731.)

The key mathematical difficulty is to guarantee the existence and uniqueness of a solution. In

other words, we need to guarantee that there is at least one surface which minimizes the surface

consistency constraint, and to guarantee that any other surface passing through the known points, for

which the functional measure of surface consistency has the same value, is indistinguishable from the

first surface. This issue is not just a mathematical nicety, however, but is essential to the solution

of many computational problems. Suppose we devise an iterative algorithm to solve some problem.

What happens if we cannot guarantee the existence of a solution? The iterative process could be set

off to solve an equation and never converge to an answer - clearly an undesirable state. Further,

suppose a solution exists but is not guaranteed to be unique. Then an iterative process might converge

to one solution when started from one initial point, and converge to another solution when started

from a different initial point. Although small variations in the different solutions might be acceptable,

the solutions should not differ in a manner inconsistent with our intuition about the problem. Thus, in

the case of visual surface interpolation, the real trick is to find a functional which accurately measures

the variation in surface orientation, as well :s guarantees the existence of a unique best surface (or a

family of indistinguishable surfaces).
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How can we guarantee the existence and uniqueness of a solution? In our particular case of

surface interpolation, we will be using the calculus of variations to determine a system of equations

which the most consistent surface must satisfy, by applying the calculus to the situation of fitting a

thin plate through a set of known points. While this system of equations characterizes the minimal

surface, it does not guarantee uniqueness. The form of the boundary conditions (the set of known

points) will determine the size of the family of minimal surfaces. Unfortunately, determining the

types of input for which a unique solution exists is generally very hard. Instead, we will exploit a

general case of the mathematical existence of a solution with the weakest possible conditions on the

functional. That is, we will determine a weak set of conditions on the functional that are needed to

ensure that a unique most consistent surface, or at least a unique family of surfaces that are most

consistent, will exist. We will show that if the functional is an inner-product on a Hilbert space of

possible surfaces, then a unique most consistent surface will exist. (A Hilbert space is an extension of

normal Euclidean space - basically a vector space in which a dot product operation exists, so that we

can relate the vectors to the real line, and in which functions are usually used in place of the normal

notion of vector.)

In general, it is extremely difficult to find a functional that measures surface consistency and

satisfies the conditions of an inner-producL Hence, we will show that if the functional is a semi-inner

product on a semi-Hilbert space of possible surfaces, then the most consistent surface is unique up to

possibly an element of the null space of the functional. The null space is simply the set of surfaces

that cannot be distinguished by the functional from the surface which is zero everywhere. In this

way, the family of most consistent surfaces can be found. Based on the form of the null space, we

can determine whether or not the differences in minimal surfaces are intuitively indistinguishable, and

what conditions on the known boundary values will guarantee a unique minimal surface, from this

family.

Having derived conditions on the functional, we need to show that there is such a functional.

Ile surface consistency constraint implies that the functional should measure variation in surface

orientation over an area of the surface. Although the condition of a semi-inner product is a rnathe-

matical requirement needed to guarantee a solution, it does not restrict in an unreasonable way the

kinds of surfaces we consider, and gives rise to at least two very natural functionals, both of which can

be derived from the calculus of variations: one measures the integral of the square .aplacian applied
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to the surface and the other measures the quadratic variation of the local x and i components of the

surface orientation. Besides the mathematical justifications, we will also show practical and intuitive

reasons in support of such flinctionals.

Given that there are at least two possible functionals, are there others? We will show that if we

require a functional that is:

1. a monotonic function of the variation in surface orientation,

2. a semi-inner product, and

3. rotationally symmetric,

then there is a vector space of possible functionals, spanned by the square Laplacian and the quadratic

variation. In other words, there is a family of possible functionals, given by all linear combinations of

these two basic functionals.

Given that there is more than one possible functional, how do they differ? Using the calculus

-of variations, and some results from mathematical physics, we will show that the surfaces which mini-

mize these functionals will be roughly identical in the interior of a region and will differ only along

the boundaries of a region. As well, the null spaces of the functionals will differ, implying different

families of most consistent surfaces corresponding to each functional. We know that the minimal

surface is unique up to possibly an element of the null space. Since we require that the solution

surface either be unique, or a member of an indistinguishable family of solutions, the size of the null

space is important in judging the value of a functional. Based on this, we will argue that the quadratic

variation is to be preferred over the square Laplacian. If we require that the surface pass through the

known points, we can show that the form of the stereo data will force a unique most consistent surface

for the case of quadratic variation, while this is unlikely for functionals such as the square Laplacian.

Thus, we assert on mathematical grounds that the best functional is one which measures quad-

ratic variation in surface orientation, and the most consistent surface to fit to the stereo data is that

which passes through the known points and minimizes the quadratic variation. In a later section,

we will see examples of the types of minimal surfaces obtained under quadratic variation and the

square l.aplacian. It will be seen that the mathematical distinction in size of null space has a practical

consequence, as the types of surfaces which minimize the square Laplacian will be seen to be inconsis-

tent with our intuitive notion of the best surface to fit to the known points, while the surface which

I

l[ . . . . , ,, =
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minimize the quadratic variation will be seen to be much more consistent with our intuitive notion of

the best surface.

4.1.1 The Problem is Well-Defined

If surfaces are to be compared, by using a functional from the space of surfaces to the real

numbers, with the purpose of finding the surface that best satisfies the surface consistency constraint

it is necessary to ensure that such a goal is attainable. What conditions on the form of the functional,

or on the structure of the space of functions, are needed to guarantee the existence of such a "best"

surface? One key constraint on the functional is given by the following theorem. The main point of

the theorem is that in order to ensure that the problem is well-defined the functional should have the

characteristics of a semi-norm.

Theorem 1: Suppose there exists a complete semi-norm e on a space of functions H, and that 0

satisfies the parallelogram law (for definition, see proof of theorem). Then, every nonempty closed convex

set E C H contains a unique element v of minimal norm, up to an element of the null space. Thus the

family of minimal functions is

where

S={v-wI wE}fn(

and XK is the null space of the functional

SX={uI e(u)=O).

.0 Proof- [See for example Rudin, 19731. Any space with a semi-norm defined on it can be

associated with an equivalent normed space. l.et W be a subspace of a vector space H. For every

v E H. let r(v) be the coset of W that contains v,

w(t) = {V + U: UE w).

These cosets arc elements of a vector space H/W called the quotient space of H modulo W. In this

space. addition is defined by

W(v) + V(W) =(t, + w)

• ++ I I : - i, , -.+ -m - .......
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and scalar multiplication is defined by

aw(v) -(av).

The origin of the space H/W is w(0) = W. Thus, x is a linear map of H onto HIW with W as its

null space.

Now consider the semi-norm 9 on the vector space H. Let

X = v: e(v) = 0).

This can easily be shown to be a subspace of H. Let 7r be the quotient map from H onto H/IX, and

define a mapping O':H/X -+ R,
e' v)= e[,).

If w(v) = i(w) then e(v-w) = 0. Since 10(v) - e(w)l _ e(v-w), then e'(ir(v)) =1'(rw))

and E' is well defined on H/I. It is straightforward to show that e' is a norm on H/If.

Now we can prove the statement of the theorem. The set E, a subset of H, can be transformed

into a set E' in the quotient space H/I while preserving the convexity and closure properties.

The parallelogram law states

[e'(v + W)]2 + [e',v - w)] = 2[e'(v)]2 + 2[e'(W)] 2 .

Let

d inf {e'(v):v E E}.

Choose a sequence v,, E E' such that e'(v,) " d. By the convexity ofE', we know that (v. +

vi n.) G E' and so [0'(v,, + v, )]2 > 4d2 . If v and w are replaced in the definition of the paral-

lelogram law by v,, and v,,, then the right hand side tends to 4d 2 . But [e'(v,, + V,n)] 2 > 4d2, so one

must have [E'(vn - v,,,)] 2 " 0 to preserve the equality. Thus, {v,,} is a Cauchy sequence in H/If.

Since the norm is complete, the sequence must converge to some v G E', with O'(v) = d.

To prove the uniqueness, if v, w E E' and @'(v) = d, O'(w) = d then the sequence

(V, W, v, W, ... } must converge, as we just saw. Thus v = w and the clement is unique.

We have proven that under the nonin 0' on the quotient space t/X., the set E' has a unique

mininial clement. I lencc. the structure of [he qluiotient space implies that onder the semi-norm 9 on

-- I
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the space H, the set E has a unique minimal element v, up to possibly an element of the null space X.

In other words, the family of minimal elements is

{v+sl .ES)

where

S=1v-wI wEE)lX.

This theorem specifies one set of mathematical criteria needed to ensure that there exists a

unique minimal element. Thus, if the surface consistency constraint could be specified by a functional

that satisfied the conditions of a complete semi-norm, obeying the parallelogram law, it might be

possible to show that there is a unique coset of "most consistent" surfaces. We would really prefer to

be guaranteed a unique surface, rather than some set of surfaces. One way to tighten the result of the

theorem is to require that the functional is a norm.

Corollary L : IfO9 is a complete norm on a space offunctonsH, which satisfies the parallelogram

law. then every nonempty closed convex set E C H contains a unique element v of minimal norm.

Proof. If the functional is a norm, the null space is the trivial null space, and the result holds

uniquely. I

The theorem can be rephrased in terms of the surface interpolation problem as follows.

Corollary 1.2: Let the set of known points be given by

{(z,,y,) Ii = ,...,N}

where the associated depth value is F. Let GJ be a vector space of "possible "functions on R2 and let

U={fG JIf(;, y )=F i = I,...,N}

so that U is the set of functions that interpolate the known data {Fi}. Let 9 be a semi-nonn, which

mieasures the "consistency" ofa function f E X, that is, we shall say thatf is "better" than g if@(f) <

E(9). If 9 is a complete semi-nonn and satisfies the parallelogram la, then there exists a unique (to

within a function (if the null space (f e)j unction a E U that is least inconsisten! and interplater the

dawt. Ilenee the interihntion pIoblei is well-defined. _

,I.=,
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Proof- Clearly U is a convex set since for any f, g C U,

[Xf + (1 - X)-](-, j = (N +1- )F= F

for any data point (xi, y,). Furthermore. U is closed, since iff, C U and f,, f f, then f(xi, ti,) - F

and f C- U. Then the previous corollary states that U has a unique (to within an element of the null

space) element of minimal norm, which is exactly the desired "most consistent" surface. j

This corollary is a translation of'Theorem 1 into the problem of interest to us, finding the surface

most consistent with the known data from the stereo algorithm. It specifies a set of conditions under

which the interpolation problem is well-defined. Here, the notion of well-defined refers to finding

a solution to the interpolation problem that is unique, and by unique we mean up to possibly an

element of the null space of the semi-norm. As a consequence, the extent and structure of the null

space of any semi-norm chosen to incorporate the surface consistency constraint will be important

in determining the utility of that semi-norm. In general, the smaller the null space, the tighter the

constraint on the family of possible surfaces which can interpolate the known data. For example, if

the possible variations in the least inconsistent surface were very large (due to the semi-norm having

a large null space), then the utility of this semi-norm would have to be questioned. On the other

hand, if the null space is small, and the resulting variations in possible least inconsistent surfaces were

small, the semi-norm would have to be given serious consideration. We will see examples of possible

functionals and their null spaces in Section 4.1.4.

Thus, Theorem 1 and Corollary 1.1 specify two different sets of sufficient, but not necessary,

criteria for ensuring differing types of uniqueness. In both cases, the criteria applied directly to the

structure of the functional. Of course, the real trick is to find a functional e which captures our

intuition of variation in surface orientation and meets the requirements needed to guarantee a unique

solution.

4.1.2 The Space of Functions

Theorem 1 describes a set of sufficient conditions for obtaining a unique family of minimal

surfaces. The fundamental point is that we require a complete parallelogram semi-norm to ensure

a unique solution. These conditions precisely define a semi-inner product, and hence the space of
i. - functions over which wc %cek a minimum must he a semi-I lilbert space.
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Corollary 1.3: If 7 is a semi-Hilbert space of possible surfaces, and 0(v) = U(v, v)i is an inner

product semi-norm, where 1(v, v)i is the semi-inner product on the space V, then there exists a unique

surface in 47 (possibly to within an element of the null space of the semi-norm) that minimizes the semi-

norm 0 over all surfaces.

Proof- By the definition of Hilbert space, the semi-norm is complete. It is easy to show that it

satisfies the parallelogram law from the definition of 19(v) = (v, v)i. Thus, if the space of functions

is a semi-Hilbert space, then, by Theorem 1, the interpolation problem is guaranteed to have a unique

minimal solution, possibly to within an element of the null space. I

Corollary 1.4: If 7 is a Hilbert space of possible surfaces and 0(v) -= U(v, v)i is an inner

product norm, where A(v, v) i is the inner product on the space 67, then there exists a unique surface in 7

that minimizes the norm 0 over all surfaces. I

4.1.3 The Form of the Functional

The major problem is to determine the functional E. The surface consistency constraint related

the consistency of a surface to the variation in surface orientation. This forms the first constraint on

thc functional. Theorem 1 states that if the functional is a complete, parallelogram, semi-norm, then

the problem has a well-defined solution. This forms the second constraint on the functional. Thus,

if a functional can be found that is a complete, parallelogram semi-norm, and that is a monotonic

function of the variation in surface orientation, then this functional will constitute an acceptable

measure of surface inconsistency. Any surface that is minimal under such a functional would then be
an acceptable reconstruction of the original surface in space.

The problem may be considered in the following manner. With every point on the surface

f, associate a pair of partial derivatives. = p, If, = q, and hence, an orientation. Each point

on the surface may be mapped to a point in a space spanned by p and q axes, the gradient space

Iltuffman, 1971; Mackworth, 1973; Horn, 19771. With each surface patch, one may then associate a

neighborhood of p-q space by mapping the p and q values associated with each point on the surface

into gradient space. This neighborhood will be referred to as the p-q neighborhoid spanned by the

surface patch.

'The surface consistency constraint implies thai the probability of a rcro-crossing occuring within

a patch of the surface is monmtonically related to the size of the p-q neighborhood spanned by the
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surface patch. The surface consistency theorem [Grimson, 1981c] embodies a specific method for

measuring this probability. Any functional that is monotonically related to the size of the p-q neigh-

borhood will suffice, however. This is important, since it is also necessary that the functional be a

complete, parallelogram semi-norm. Thus, the problem reduces to speciflying such a complete, paral-

lelogram semi-norm, which monotonically measures the surface consistency constraint by measuring

a monotonic function of the size of the p-q neighborhood spanned by each surface patch. To find

the most consistent surface, one need only find the surface that minimizes this functional over each

patch. Note that the surface will be "most consistent" only relative to the functional. There may be

several functionals that are complete, parallelogram, semi-norms and that are monotonic functions of

the variation in surface orientation. Each will give rise to slightly different minimal surfaces.

Of course, there are some constraints on the minimization of the measure of the p-q neighbor-

hood. For example, each surface patch cannot be minimized in isolation. To see this, consider a

cylindrical (or one-dimensional) surface. Between any two adjacent zero-crossing points, the mini-

mization of the variation in surface orientation (related to the size of the neighborhood in p-q space)

would result in a single point in gradient space, corresponding to a planar surface between the known

depth values. The problem with this simple method of reducing surface inconsistency is that it does

not account for the interaction of surface patches. In particular, such a method would result in

a piecewise planar surface approximation. For any three consecutive zero-crossing points, such a

method would introduce a discontinuity in surface orientation at the middle zero-crossing. This is

unacceptable since the surface is required to be twice differentiable. Thus, there are some constraints

on the manner in which the neighborhoods in p-q space are minimized.

We are thus faced with the following problem. We know from the boundary conditions

provided by the stereo algorithm that the surface must pass through a set of known depth points

located at the zero-crossings of the convolved images. We further know that at all other points in

the image, the surface cannot change in such a manner as to cause an additional zero-crossing. With

each surface portion, we can associate a measure of the probability of that surface implying a zero-

crossing in the convolved image intensities. Since between zero-crossings, there are no other zero-

crossings, this gives a measure of the inconsistency of this particular surface portion. To choose

the least inconsistent surface, we must reduce this probability, as measured over all portions of the

surface.

fs1
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4.1.4 Possible Functionals

In this section, possible functionals 49 are considered, seeking complete, parallelogram semi-

inner products where possible, since this will guarantee that the solution is unique to within the null

space. However, it is important to stress that there may be several viable alternatives. The computa-

tional theory argued that the functional should measure the "consistency" of the surface. The attempt

here is to define a measure based on this. The measure should be in a form that allows the constraints

on the problem to be easily expressed. Also, the measure should be a semi-inner product on a semi-

Hilbert space, in order to ensure a unique solution. We begin by considering several candidates in

light of these requirements.

Case 1: One Dimension

For ease of discussion, the case of a cylindrical or one-dimensional surface will be considered

first. By a cylindrical (or developable) surface we mean a second differentiable surface oriented along

thc y axis such thatLOf/Ojj = q = c, for some constant c.

Example 1.1: The variation in the normal to the curve is clearly related to its curvature. One

could thus consider using a functional that directly measures curvature and integrates this measure

over an area of the surface. To ensure that the functional is positive, this suggests using a functional of

the form:

-4 where r. is the curvature of the curve at a point. (Rcall that the subscript here implies a partil

derivative, so that f - (al2f/0 2 )2 .) Although this is perhaps the most "natural" definition of a

functional, it is not a semi-norm, and hence it is considered to be unacceptable. To see why it is not a

semi-norm, consider the following. If f is in the space of surfaces, then

I a 2 * dzf
(I+ 02f2,)3

3 $ao,(f).
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This condition will be true only if fz 0. While this is certainly far too restrictive a condition to

place on the possible surfaces, it does suggest a possible alternative.

Example 1.2: A second choice is the quadratic variation of the gradient, which may be measured

by:

82(f) fl dz

Note that it is a close approximation to the curvature of the curve, provided that the gradient f is

small. 0 2 is a semi-norm, so the surface that minimizes this norm will be unique to within an element

of the null space of the semi-norm. The null space of e 2 is the set of all linear functions:

X span{l, x}

where

span{vl,...,v,,} = {aVI +- ... + amtvm I a,. .,am E

Not only does this form of the functional satisfy the mathematical criteria of a complete, paral-

lelogram semi-norm, it has a strong relationship to the "natural" form e 1(f), since the restriction of

small f is acceptable. Those cases in which f is not negligible correspond to situations in which the

surface is rapidly curving away from the viewer. These situations are such that the curvature of the

surface will cause it to be invisible in one eye - giving rise to occluding boundaries. In general, we

can assume that the image does not consist solely of occluding boundaries, so that such occurrences

will be rare in an image. Moreover, between such points, the surface will satisfy the restriction and the

above semi-norm is well-suited to the interpolation problem.

Case 2: Two Dimensions

To each of the examples of the one-dimensional case, there is an analogous two-dimensional

case.

Example 2.1: As in the one-dimensional case, one possibility is to measure the curvature of the

surface. The curvature of a surface is usually measured in one of two ways.

For any point on the surface, consider the intersection of the surface with a plane containing

the normal to the surface at that point. This intersection defines a curve, and the curvature of that

curve can be meas ured as the arc-rate of rotation of its tangent. For any point, there are infinitely

many nomal sections, each defining a curve. As the normal .section is rotated through 2w radians,

- -
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all possible normal sections will be observed. There are two sections of particular interest, that which

has the maximum curvature and that which has the minimum. It can be shown that the directions of

the normal sections corresponding to these sections are orthogonal. These directions are the principal

directions and the curvatures of the normal sections in these directions are the principal curvatures,

denoted r,0 and t4. It can be shown that the curvature of any other normal section is defined by the

principal curvatures.

There are two standard methods for describing the curvature of the surface, in terms of the

principal curvatures. One is the first (or mean) curvature of the surface

J = Ka + K,+

The other is the second or Gaussian curvature of the surface

K-=-n--- ..

For a surface defined by the vector {z, Y, f(, 0i)}, these curvatures are given by

FI= _____

f2 + , YV f.2 +f

and

K= - f2(, +,-,I + f,)
Thus, there arc two possibilities for the functional. One is to measure the first (or mean)

curvature of the surface,

e.3(f) = {JJJ2dzdy}

= If f (f (I + f2)I+ fj.( + fl)- 2f.fufzu,) 2fl,v + fV,)

As in the one-dimensional case, this is not a semi-norm, since

O"(a) l[Qf f  (l + a2f2) + f :P( + 2/) - 2af a/fZ)I- "f

(I + a2f 2 + dzdyj

IO NAle(f).



23

However, if f, and fy are assumed to be small, then it is closely approximated by a semi-norm. In this

case, consider

94(f) = (Jf (v )2 dxdy}

This is a semi-norm, with null space consisting of all harmonic functions.

A second possibility for reducing curvature is to reduce the second or Gaussian curvature,

05(f) {J K2 dxdy}
J2

By an argument similar to the above, it can be shown that this is not a semi-norm. Note that by using

the above approximation of small f, and ft, we get the functional• ' (/ }+
eo(f) = i fj]i - f dzdyj

We will return to this form later.

Example 2.2: As in the one-dimensional case, one can also consider the quadratic variation. The

quadratic variation in p = ,4 is given by

and the quadratic variation in q = fu is given by

f f (z +q) d dy.

If the surface is twice continuously differentiable, then p. = qx, and by combining these two varia-
.4 tions, one obtains the quadratic variation:

87(f) = f 2. + 2f.21 ±f~ydzdy}

Again, as in the one-dimensional case, this is a complete semi-norm that satisfies the parallelogram

law. Hence, the space of interpolation functions has an element of minimal norm, which is unique up

to an element of the null space, where the null space is the set of all linear functions:

X. = span{l, z, y).

I)uchon (1975, 1976) refers to the surfaces that minimize this expression as thin plate splines

since the exprcvion 07 relatcs to the energy in a thin plate forccd to interpolate the data.

-
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4.2 Where Do We Stand?

We have seen that for the general surface interpolation problem, there are two constraints on the

possible functionals. One is that the functional must measure a monotonic function of the variation in

surface orientation. The other is that the functional should satisfy the conditions of a complete paral-

lelogram semi-norm, or equivalently, a semi-inner product. If the functional satisfies these conditions.

then we know that there will be a unique family of surfaces that minimize this functional and hence

form a family of best possible surfaces to fit through the known information. In the examples sketched

above we saw that there are at least two possible candidates for this functional, namely the square

i Laplacian,

4(f) ( ff(V2f ) dxdy}

and the quadratic variation,

S7(f) + f

There are several points still to consider. Are there other possible functionals? How do the mini-

mal solutions to these functionals differ? What criteria can be applied to determine which functional is

best suited to our surface interpolation problem? What is the best functional under those criteria? In

the remainder of this chapter, we shall consider these questions in detail. The point we shall develop is

that the appropriate functional to apply is the quadratic variation, and thus the surface that minimizes

this functional is most consistent with the imaging information.

4.3 Are There Other Functionals?

We have determined at least two functionals that meet our conditions. Are there other possible

functionals, and if so, how do their minimal solutions differ from those of the square [aplacian and

the quadratic variation?

To answer this question, we rely on a result of Brady and Horn 119811, which we sketch below.

Recall that the basic conditions on the functional were that it measure a monotonic function of the

variation in surface orientation, and that it be a semi-inner product. 'The first requirement suggests

that the functional munst involve terms that are functions of the second order partial derivatives of the (I)
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surface, since such terms will be related to the variation in surface orientation. The second require-

ment is needed to ensure the uniqueness of the solution. Recall that 11(f, 9) is a semi-inner product

if

1. J(f, g) = t(g, f),

2. ,A(1 + g, h) = ,A(f, h) + ,A(g, h),

3. /(af, g) = a/(1, g),

4. (f,f) > o,

and that given a semi-inner product t.(f, g), one can define the desired functional by 0(f) =

/4(1, f).

The difficult condition to satisfy is (3), which implies that the semi-inner product should not

-* contain any constant terms. The conditions taken together imply that we should consider any quad-

ratic form as a possible semi-inner product:

,Vf g) = f f fzxgz + f3f~g-Y + -yfg1 , +

+6(f/g. + f/..g.) + (L.gi + Lxg.) + (f.gy + f0-gY).

Thus, the corresponding functional will have the quadratic form:

8(f) =Jf f X + pf;2' + _j2Y + 26..~ + 2(hf.fy + 2 f~11hy-

The final condition we apply to the fun ctional is that it be rotationally symmetric. This follows

from the observation that if the input is rotated, the surface that fits the known data should not change

in form, other than also being rotated.

Minimizing the quadratic form of the functional @(f) can be considered as finding the mini-

mum over the integral of the function (Af)'MAf where A! is the vector:

and M is the symmetric matrix

... 6 -

M. 6 ,- C -.



HOW DO THE FUNCTIONALS DIFFER? 26

fR is a rotation matrix, then the condition of rotational symmetry is given by

(RAAITM(RAf) = 4ITM4f.

Vector algebra implies that we must have
RTMR = M or RTM = MR - .

Equating elements shows that the matrix M must have the fbrm

M= 0 0

There are two important consequences of this fact. The first is that the set of all possible fune-

I tionals forms a vector space, since if M, and M2 satisify the conditions, then so does ovM + vM2.

The second is that this vector space of operators is spanned by the square Laplacian and the quadratic

variation since:

0 P 0 0 0 0 + 0 2 0

The first term of the sum corresponds to the square Laplacian while the second corresponds to the

quadratic variation. Thus, for f = I and O = 0, the functional reduces to square Laplacian. For

= 0 and /3 2, the functional reduces to quadratic variation. Finally, if e = and/$ -1

we obtain a functional which corresponds to the approximation to the integral of square Gaussian

cUrvature derived in Section 4.1.4.

'Thus, we have answered our second question. There are other possible functionals, but they are

all linear combinations of the two basic functionals, the square I.aplacian and the quadratic variation.

4.4 How Do the Functionals Differ?

Given that there arc many possible functionals, all linear combinations of the square Laplacian,

0 1, and the quadratic variation, 07. we must consider how the solutions to the square Laplacian and

the quadratic variation differ. In other words, is there any noticeable difference in the surfaces that

minimizes these two functionals, subject to fitting through the stereo data? To answer this question.

we shall rely on the Calculus of Variations, (see. for example, Courant and F lilbert [19531 and Forsyth

11601). 'lhc sditit points are outlined below.
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4.4.1 Calculus of Variations

The calculus of variations is frequently used to solve problems of mathematical physics, and is

applicable to our surface interpolation problem. In particular, we can use the calculus of variations

to formulate differential equations associated with problems of minimum energy. Suppose we are

given a thin elastic plate, whose equilibrium position is a plane, and whose potential energy under

deformation is given by an integral of the quadratic form in the principal curvatures of the plate.

We can consider the interpolation problem as one of determining the surface formed by fitting a

thin elastic plate over a region % (with boundary 17) and through the known points. Using a small

deflection approximation, the potential energy is given by

ff4 [(V'ii)2 - 2(1 - Y Z- ldx

The solution to the interpolation problem is then the surface which has the minimum potential

energy.

The calculus of variations can be used to characterize this problem by providing a set of

differential equations (called the Euler equations) which the solution surface must satisfy. It can be

shown (see Courant and [filbert, [1953, p.2 51]) that the Euler equations for the interior of any region

% are given by

V 4 f = fz.., + 2fxy + fyyy O,

except at the known points. Along the boundary contour r of the region, the solution surface must

satisfy the equations (called the natural boundary condilions):

M(f) = _V 2f -+ (1 -+)(f x + 2f.,uxy. + fyty) = 0

P(A)= V2 f +(I- A) f. XX- (z XU + X.z,) + 1 ,o =0,

,4
where 6/6n is a derivative normal to the boundary contour, ,/,9a is a derivative with respect to

arclength along the boundary contour and x., y. and x,,, y,, are the direction cosines of the tangent

vector and the outward normal respectively. The constant 1A denotes the tension factor associated with

the elastic material of the plate.

There are two suhcases of particular interest. In the first case, suppose that the tension factor is

given by/ = 1. The energy equation reduces to

I if)2

f .T
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which is simply the square Laplacian condition derived previously. The Euler equation is the bihar-

monic equation V4 - 0 while the natural boundary conditions are

V2f = 0

&-V2f-=0,
along the boundary contour r. In the second case, suppose that the tension factor is given by;& = 0.

The energy equation reduces to

, f2

which is simply the quadratic variation condition, also derived previously. The Euler equation is

identical to that of the square Laplacian, namely the biharmonic equation V4f = 0. The natural

boundary conditions are different, however. They are given by

V2 f+ (t==z + 2f.y. + )= 0

aVf + + Tx,-f + j(z, + Z ) +f-fun/nl.)) = 0.

In the simple case of a square boundary, oriented with respect to the coordinate axes, the boundary

conditions reduce to: fi, = 0
2f, y +t fyyy -- 0

along the boundary segments parallel to the x axis, and

fT = 0
21yyz + fXzz = 0

along the boundary segments parallel to the y axis.

These boundary conditions can be straightforwardly simplified to:

fiy, 0

along thc boundary segments parallel to the z axis, and

f"= 0

along the boundary segments parallel to the y axis.
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We have thus answered our question. For both the square Laplacian and the quadratic

variation, the Euler equations are identical in the interior. The only difference to be noted in the

extremal solutions to the two functionals will be observed at the boundaries of the surfaces. When we

look at examples of solving these equations, this difference will become important.

There is a second manner in which the minimal solutions to the functionals will differ, in part

related to the difference in boundary conditions of the two solutions. While the form of the minimal

surface under either functional is roughly the same, except at the boundaries, this minimal surface will

be uniquely determined only to within an element of the null space of the functional. This will be an

important factor in determining which functional is best suited to our problem, since we would like

the boundary conditions provided by the stereo data to completely determine a unique solution. The

null spaces of the two functionals differ greatly, since the null space of the quadratic variation is the

space of all linear functions, while the null space of the square Laplacian is the much larger space of

all harmonic functions. We shall consider the effect of this difference later.

4.5 The Best Functional

Given that the set of possible functionals forms a vector space spanned by the square Laplacian

and the quadratic variation, what criteria can be applied to determine the best functional? Since the

Euler equation for both of these basis operators is the biharmonic equation V4f = 0, the same will

be true of any other operator in the vector space. This implies that aside from boundary conditions at

the edge of the region being interpolated, the surfaces provided by any operator in this space will be

basically the same.

This being the case, the only other characteristic that can distinguish between the possible func-

tionals is the size of their respective null spaces. Let us denote the null space of the square Laplacian

by XIf (the space of all harmonic functions) and the null space of the quadratic variation by X 2 (the

space of all linear functions). Note that 2 is a subspace of Xf1 . Now the null space for any linear

combination of these two operators must contain at least the space spanned by the intersection of the

two null spaces Xi and .X2. Ilence, the null space of any other operator must consist at least of the

linear functions. 'hus, no possible operator can have a null space smaller than that corresponding to

quadratic variation.

4

-
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The importance of the null space is that it helps determine the family of surfaces that are mini-

mal under the functional. The requirement we impose on the best functional is that the member of

this family corresponding to the minimal surface be uniquely determined, when combined with the

requirement that the surface must pass through the known points provided by the stereo algorithm.

Clearly the smaller the size of the null space, the fewer the requirements we must impose on the

output of the stereo algorithm in order to insure a unique solution.

We may view this criterion in the following manner. Initially, we start with the space of all pos-

sible functions, namely, the space of' all second differentiable functions of two real variables, denoted

C2(R2). If we restrict our attention to those surfaces that pass through the boundary conditions

SI. imposed by the stereo or structure-from-motion data, we define a convex subset U of this space. If we

define a functional on this space, the set of surfaces that are minimal under the functional are given by

{v+wI wew}

where

nW=fv-uI uE U)X,

for some minimal surface v E U. We are guaranteed a unique solution to the interpolation problem
if W is empty (or equivalently, consists only of the null surface, defined to be zero everywhere).

The key question becomes: can we have two surfaces that fit through the known points, have the

same measure of surface consistency (the same value as measured by the functional) and differ by an

clement of the null space? If not, we are done, as the minimal surface is then guaranteed to be unique.

Thus, the structure of the boundary conditions provided by the stereo algorithm (or the structure-

from-motion algorithm) may be important in deciding which functional is more suitable. Clearly, the

smaller the subspace of minimal surfaces, the more likely we are to have a unique minimal surface

fitting the known data, as the set W is more likely to be empty.

Recall that the null space of the square Laplacian

8(f) {ff f)2 }

is the set of all harmonic functions. We wish to know what form of the boundary conditions will

uniquely determine the harmonic function. 'lis problem is knotn a% the I)iriihlet prulhem in 0



71

31

classical analysis, and it has long been known that if the boundary conditions consist of a series of

closed, bounded Jordan curves, then the harmonic function is uniquely determined. These are, of

course, sufficient, but not necessary conditions. It would appear, however, from these conditions

that it is unlikely that the boundary conditions provided by the stereo algorithm will be sufficient to

uniquely determine the component of the null space. This follows from the observation that the stereo

algorithm is capable of providing boundary values at scattered points in the image, corresponding to

the zero-crossings of the convolved image, while the Dirichlet problem is uniquely determined if the

boundary values form a closed, bounded Jordan curve. Thus, in the case of the square Laplacian, the

best we can do is determine a family of most consistent surfaces, which differ by harmonic functions.

Referring back to our earlier question, we see that in this case, we could have two (or more) surfaces

which fit through the known points, have the same measure of surface consistency, and differ by an

element of the null space. The variation in such a family of surfaces is not consistent with our intuitive

notion of indistinguishable surfaces, that is, the difference in the shape of two surfaces which have

identical minimal values for the square I-aplacian measured over the surface can be noticably large.

As a consequence, we consider the square Laplacian to be a poor choice for the functional.

On the other hand, the null space of the quadratic variation

is the set of all linear functions. The boundary conditions required in this case to uniquely determine

the component of the null space are much simpler. In particular, if the stereo algorithm provides at

least three non-colincar points, the element of the null space is uniquely determined to be the null

surface (the surface which is zero everywhere). It is clear that in almost all imaging situations, the

stereo algorithm will be capable of providing the necessary boundary conditions, and thus the most

consistent surface is uniquely determined.

Thus, we have seen that the only possible functionals that can be used to measure the surface

consistency constraint form a vector space spanned by the square Laplacian operator and the quad-

ratic variation operator. 'he minimal surface for any such operator satisfies the biharmonic equation

in the interior of the region being interpolated, but along the boundaries of the region it may satisfy

different differential equations than the minimal solution of any other operator. In general, this

implies that the solution surflices corresponding to different operators will generally difl'er in shape

4t
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only near the boundaries. To distinguish between possible operators, we examined the form of their

null spaces. We showed that the operator with the smallest null space was the quadratic variation.

Further, the stereo data is in general sufficient to uniquely determine the component of the null space

corresponding to the minimal surface. That is, the surface that minimizes the quadratic variation, sub-

ject to passing through the known points provided by the stereo or structure-from-motion algorithms,

is uniquely determined.

4.6 The Computational Problem

By combining the results of the last two chapters, it is now possible to state the computational

theory of the problem of interpolating visual surface information.

The Interpolation of Visual Information: Suppose one is given a representation consisting of

surface information at the zero-crossings of a Primal Sketch description of a scene (this could be either

from the Marr-Poggio stereo algorithm, or from the Ullman structure-from-motion algorithm, or both).

Within the context of the visual information available, the best approximation to the original surface in

the scene is given by the minimal solution to the quadratic variation in gradient (or surface orientation)

= (f r2' + 2f2Y + f2,, dxdy}4

Such approximations are guaranteed to be uniquely "best" to within an element of the null space of the

functional 1. In the case of quadratic variation, the null space is the set of all linear functions. Provided

the set of known points supplied by the stereo algorithm or by the structure from motion algorithm

includes at least three non-colinearpoints, the component of the surface due to the null space is uniquely

detennined to be the null surface. Hence. the surface most consistent with the visual information is

uniquely determined.

It is worth noting that although the above statement is phrased in terms of zero-crossings ob-

tained from images convolved with V2 G filters, the heart of the statement is much broader in scope.

The key point is that to interpolate any surface representation which contains explicit information

only at sparse points in the representation, we need to find the "most conservative'" surface consistent

with the input information. This implies that between the known surface points, the surface should

vary as little as possilble. Thus, whether those known points correspond to zero-crossings., edi,cs, or

-i
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some other basic descriptor of image changes, the surface interpolation algorithm should construct the

surface which minimizes variation in the surface between the known points.

It is interesting to compare the criteria for surface interpolation developed here, as well as the

specific theory of surface interpolation stated above with the work of Barrow and Tenenbaum, (198 1].

5. Constrained Optimization

Our goal throughout this paper has been to find the surface that best fits the known data

provided by the stereo algorithm or the structure-from-motion algorithm. In the preceeding sections,

we saw that such a "best" surface exists and is characterized as the surface that minimizes the func-

tional of quadratic variation, measured over the surface. The problem we address now is how to find

that minimal surface. What is meant by "finding the minimal surface"? Our goal is to derive an

algorithm that computes explicit surface values (such as depth, or relative depth) at all points on a

discrete grid, m points on a side. (That is, the scene will be partitioned into an m X m grid, and to

each grid point, we want to associated a surface value.)

In general terms, we are seeking an algorithm to solve an optimization problem - we want to

compute the values of a set of parameters that optimize some function. In our case, the parameters

correspond to the surface values at the grid points, and the function to be optimized is the measure of

a discrete correlate to quadratic variation over the surface. We will restrict our attention to the class of

optimization algorithms that satisfy three simple criteria of biological feasibility - parallelism, local-

support, and uniformity. These three criteria, together with the form of the input data - scattered

contours of known points - preclude many of the possible techniques for solving an optimization

problem, but also suggest the use of techniques such as those of mathematical programming.

5.1 The Role of Algorithmic Criteria

An essential problem for any computational theory about early visual processing is to determine

the implicit assumptions used by the visual system to perform the computation. These are valid

assumptions about the environment that are explicitly incorporated into the computation. Ullman's

rigidity assumption in visual motion perception IJUIlman, 1979a). Marr and I lildreth's condition of

linear variation and spatial coincidence assunption lMarr and I lildreth, 19801. and Marr and Poggio's

' - I I I - I- C
-'
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assumptions of uniqueness and continuity [Marr and Poggio, 19791 are three examples. Such assump-

tions may be considered as computational constraints on the problem.

There is a second set of criteria that may be applied to any theory and, more importantly, to any

algorithm for a theory. They deal with the requirement of biological feasibility, and are important if

one is to describe a model of the human system. They will be termed algorithmic criteria. Ullman

[1979b] has listed a number of such criteria that should apply to any biologically feasible algorithm. A

similar set is briefly sketched here.

Parallelism

The need to process large amounts of input data in short amounts of time implies the use of

computations that can be implemented in a parallel manner, using a large number of intercon-

nected processors.

Local Support

If the number of processors involved in the computation is large, it becomes infeasible to con-

nect each one to all of the others. Rather, there should only be local connections between the

processors. Here, "local- means not only that the number of connections be small, but also that

since the information being processed has a two-dimensional plane as an underlying coordinate

system, the connections should also be local in a spatial sense. If the support of a function,

defined on a two-dimensional grid, is the set of points on the grid that contribute in a non-

trivial manner to the computation of the function, then our requirement is that the processors

implementing our computation must have local support.
Uniformity

One final consideration, though not as critical as the first two, concerns the uniformity of the

4 processors. If it is possible, an algorithm that utilizes parallel networks of identical processors

will be favored over other algorithms. Such a requirement is not crucial, however.

Although the original motivation for such restrictions on an algorithm arises from consideration

of the human visual system and restrictions of biological feasibility, they could apply equally well to

other types of image processing systems. As such, they are taken as general criteria for the computa-

tions to be investigated, regardless of whether the algorithm serves as a model of the human system.

In designing algorithms to solve a particular visual process, the first step is to seek a method that
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solves the problem. Having done so, one can then consider its applicability in light of the criteria

outlined above, and possible modifications to the algorithm in order to satisfy those criteria.

5.2 Mathematical Programming

The surface interpolation problem, as we have developed it, can be viewed as an optimization

problem: that is, the solution to the surface interpolation problem is equivalent to the minimal point

of an objective hypersurface. There is a large body of literature on methods for finding the solution

to optimization problems in general. In considering which one to apply to our problem, we take

two factors into account. The first is the form of the input data supplied by stereo (and possibly

also structure-from-motion). The key point is that the set of known points will generally consist of

a series of zero-crossing contours, along which the depth is known. These contours are not closed,

since the horizontal components will have no disparity value, and hence no depth value, assigned to

them. Further, they tend to be scattered at random rather than distributed uniformly over the grid.

(This removes many methods from further consideration.) The second factor is the architecture of the

possible algorithm, outlined by the algorithmic criteria of the previous section. As a consequence of
9- - these two factors, many of the possible methods, while perfectly valid solutions mathematically, are

not readily applicable to our problem. A comprehensive review of the types of methods may be found

in Schumaker 119761 (see also Grimson [1980, 1981b]).

Given that an algorithm used to solve the visual surface interpolation problem must be local,

parallel and uniform, and must be capable of dealing with scattered input data, one of the best

methods to use is mathematical programming, and in particular, nonlinear programming. Ullman

[1979b] has shown that many problems of relaxation and constrained optimization can be solved by

local nonlinear programming processes (see also Hummel and Zucker [19801). Indeed, a method

similar to that outlined here was used by Ullman in solving the motion correspondence problem

[Ullman, 1979a).

Recall that the problem with which we are faced is to find the surface that minimizes a fiinc-

tional measuring surface consistency. The most likely candidate for this functional is the quadratic

variation. The boundary conditions with which the surface must agree are depth values aionS

the zero-crossings, given either by the Marr-Poggio stereo algorithm or the Ullman structure-from-

motion algorithm. These boundary conditions can he met in one of two ways. If the surlce is
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required to fit exactly through the boundary points, the problem is one of surface interpolation. If

the surface is required only to pass near the known points, while minimizing some error function, the

problem is one of surface approximation. In the following sections, both problems will be examined.

Two cases of optimization will be examined: unconstrained optimization, which is applicable

to the approximation problem, and constrained optimization, which is applicable to the interpolation

problem. Standard algorithms for computing the solution to the optimization problem for each case

are sketched below. For more details on mathematical programming, see for example Luenberger.

[19"/3].

The Conjugate Gradient Algorithm

Starting at any point xo E El define do -go -b - Qxo and

xk+ I- = X + Qkdk

0 k = - dQdk

dk+1 = -gk+1 + 34

gk+lQd7
dred

where gk = Qxk -b.

We will apply this algorithm, for the case of unconstrained optimization, to the problem of

visual surface interpolation in the next section. Because the algorithm is solving an unconstrained

optimization problem, it wifl be applicable to the surface approximation problem, where the surface is

required to pass near, but not necessarily through, the known points.

Gradient Projection Algorithm

The algorithm may be summarized as follows.

1. Find the subspacc ofactivc constraints M, and form the matrix A,.

2. Calculatc the projection matrix Pk = I - A T(ApAT' A] and the direction vector d

-PkV 
f(x)T.

3. if d 3 0, find the scalar cl that maximizes

{a: x + ad is feasible}

and the scalar c., that minimizes

{f(x + ad): 0 < a < el}
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asa function of a. Set x to x + c2d and return to (1).

4. If d = 0, find3 3 APAT A)VfCx)T. If #j > 0, for all j corresponding to active

inequalities, stop, as x satisfies the Kuhn-Tucker conditions. Otherwise, delete the row from AP

corresponding to the inequality with the most negative component of 0 and return to (2). 1

We will apply this algorithm, for the case of constrained optimization, to the problem of visual

surface interpolation in the next section. Because the algorithm is solving a constrained optimization

problem, it will be applicable to the surface interpolation problem, where the surface is required to

pass through the known points.

6. The Interpolation Algorithm

The algorithms of the previous section can now be applied to the problem at hand, the inter-

polation (or approximation) of visual surfaces from the stereo data. Recall that the interpolation

problem was stated as:

The Inierpolalion of Visual Information: Suppose one is given a representation consisting of

surface information at the zero-crossings of a Primal Sketch description of a scene (this could be either

from the Marr-Poggio stereo algorithm, or from the Ullman structure-from-motion algorithm, or both).

Within the context of the visual information available, the best approximation to the original surface in

the scene is given by the minimal solution to the quadratic variation in gradient

19(s) = (-f + 28XY + a Y d+dy

(where 8 denotes a surface). Such approximations are guaranteed to be uniquely "best" to within an

element of the null space of the functional 8). In the case of quadratic variation, the null space is the

set of all linear functions Provided the set of known points supplied by the stereo algorithm or by

the structure-from-motion algorithm includes at least three non-colinear pointx the component of the

surface due to the null space is uniquely determined to be the null surface. Hence, the surface most

consistent with the visual information is uniquely detenmined

We shall consider solving this optimization problem both in the case of interpolation (the sur-

face passes exactly through the data) and in he case of approximation (the surface passes near the

daa). Although the algorithms could be either applied to the square I aplacian or to the quadratic

vaiation, wc shall exainic only the case of the clmiadri-tic variation.
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6.1 Conversion to the Image Domain

The problem, as stated, lies clearly within the domain of continuous functions. Yet this is

not appropriate to the case at hand. In order to establish an algorithm for transforming the visual

information into a representation of the surface shape, a number of conversions must take place.

The first point to note is that the functional 9(s) consists of a square root. (Note that we will use

a to denote the surface which we are fitting to the known points, to distinguish it from the notation

of a used in the previous chapter to denote the objective function.) However, clearly any function

which minimizes the functional 8(a) also minimizes the functional 02(s). and vice versa, provided

that the functional is always positive in value. Hence, without loss of generality, one may consider the

minimization of

0(s) 8 f 2Xa + 2a 2 + a 2) dzdy.

Throughout this section, this will be the functional to be minimized.

In order to determine the structure of the algorithm, one must address the issue of the form of

the output representation, since that will have a major effect on the actual algorithm. In this case, it

is desired that the surface information be specified only at particula- olaces within the representation

of the scene. This will be accomplished by requiring that the interpolaton algorithm compute explicit

depth values at all locations within a Cartesian grid of uniform spacing. Although both the spatial

resolution of the grid and the resolution of the depth information stored within that grid should be

determined, it is considered that such parameters are not critical to the development of the algorithm.

Hence, these parameters will be assigned arbitrary values.
The continuous functional must now be converted to a form applicable to a discrete grid.

Without loss of generality, assume that the grid is of size m X m. Each point on the grid may be repre-

sented by its coordinate location, so that the point (i, j) corresponds to the grid point lying on the ith

row and the jih column. At each point (i, j) on the grid, a surface value may be represented by ij).

Each such surface value may be considered as an independent variable, subject to the constraints

of the problem, of course. Using either row major order or column major order, these variables

oj) may be considered as a vector of variables, denoted s = {8(,o),I(o, 1), ... , 8(,.- ,(,-I))).

(For clarity, a straightforward transformation from the doubly-indexed grid coordinates into a singly-

indexed vector coordinate can be established. For example, the grid point (i,j) can be mapped

to the vector point k == mi + j. and the vector point k can be mapped to the grid point (i,.j) A
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([k/mJ, k - m[k/mJ).) It is this vector which will be modified using the non-linear programming

algorithms, and the final value of which will form the solution to the optimization problem and thus

correspond to the desired interpolated surface.

Having converted the surface function to a discrete grid format, it is now necessary to convert

the objective function of the optimization problem to a discrete format. This means that the

differential operators must be converted to difference operators. There are many possible dis-

crete approximations to the differential operators. We choose to use the following approximations

[Abramowitz and Stegun, 1965, p. 8841.

The second partial derivative in the x direction may be approximated by

" 28(,j) 1

oX2 h - 2 (,,j) + 8(i-Ij) + (h2

where h is the grid spacing, and 0(h2) indicates that the approximation is valid to terms of order h2.

Similarly, the second partial derivative in the y direction may be approximated by

8O8(,j) 1oa2 0 (h2).

The cross second partial derivative can be approximated by

028(0,) + 1
Oz gy 4 '"-  b+I- 1 +1) - - 8(+',a-) + 8(--I,j-)] 40(h?).

Note that such approximations have frequently been used in the image processing literature, (for

example, see the reviews of Davis [1975], Rosenfeld and Kak [19761, Pratt [19781). Little is known of
1the affect of these approximations on the behavior of the result.

Having converted the surface function and the differential operators, one must convert the

double integral to a discrete equivalent. This can easily be done. by using a double summation

over the finite difference operators applied to the discrete grid. One minor point is noted. While

it is straightforward to form the discrete equivalent to the double integrals f f s..dzdy and

f f adzdyl, the cross term 2 f f s~,dxdy is handled differently. In particular, consider a second

grid, superimposed on the first, which has twice the spatial resolution of the first (that is, all integer

points are represented as are all points (Q, i)). For the cross term, we shall apply the finite difference

OperatOr to all half integral points on this finer grid. The combination of these operators yields the

P 11
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discrete objective function:

minimize E E - 2a(ij) + (i+t,))

i-1 j-0

- I m-2

+ 1 8j.-) -
2 (ij) +

i-0 j-1

m-2 m-2 2+2 (8,) - 8i',,,) - (,,,+l) + (+l,,j+t
i-0 j-0

Finally, the characterization of the constraints must be considered. The case of interpolation

will be considered first, where the interpolated surface is required to pass through the known points.

Let F = {(i, j) I there is a known depth value at the grid point (i, i)} be the set of grid points

for which a depth value is known. Then the constraints on the optimization problem have the fbrm

o(jj) - c(ij) = 0 for all points (i, j) in the set t, and where the c(i,)'s are a set of constants reflecting

the stereo data. Note that the set of constraints are all equality constraints.

6.2 The Gradient Projection Interpolation Algorithm

It is now possible to consider applying the gradient projection method to this problem:

M-2 M-- 12

minimize m-2 rn- ( -,- + i,,j)t+I1ij)

s-I J-0

M-1 m-2 '2

+ E E - a~j) +
I= j1I

m- 2 m-2 2

j-0 -(+

subject to 8(i,j) - c(ij) = 0, (i, j)E I.

To apply the method of gradient projection, it is necessary to determine the set of active con-

straints, and the projection matrix onto the subspacc spanned by the active constraints. Clearly, since

all the constraints are equlity constraints, they are all active at every iteration. 'ITus, the matrix AP--

• -.4 "+ - - .+ .. ,. -: . : : , .
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(where p = 111) has rows consisting of a I in the position corresponding to the grid point (i, j) for

(i, j) E I and O's elsewhere. One can easily show that APA = I and that AAp = 6 where ky is

a matrix consisting on O's except for those rows corresponding to a point in ?, such rows containing a

1 for the diagonal element. Thus, the projection matrix P = I - 6y consists of all O's except for the

diagonal elements in those rows corresponding to a grid point not in 1, such elements being 1. The

effect of the projection matrix P is to ignore any components of the direction vector d corresponding

to a known point, while preserving all other components, unaltered.

Recall that the direction vector d is determined by the projection of the negative gradient of

the objective function. By expanding the double summation and performing the differentiation, the

components of the gradient of the objective function are given, in this case, by the following:

For all elements in the center of the grid, apply the following stencil to the grid representation of the

surface function s:
2

4 -16 4

2 -16 40 -16 2

4 -16 4

2
By this, we mean that given a two-dimensional grid representation of the current surface approxima-

tion, s, the value of the component of the gradient of the objective surface at some point (i, j) on the

grid is obtained by applying the above stencil centered over that point (i, j), multiplying the value of

each of the stencil points with the value of the surface at that point and summing these products. The
value of the components of the gradient can be computed in this manner by applying the stencil to all

points in the center of the grid.

Along the outer edges of the grid, the above stencil does not apply. Instead, a careful expansion of the

gradient of the objective function shows that the following stencils should be used.

For elements in the corners of the grid, apply the following stencil (or its appropriate rotations and

reflections) to the grid representation of the surface function s:

-8 4 2

8 -8 2.
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For elements along an outside row of the grid, one point removed from the corner, apply the fol-

lowing stencil (or its appropriate rotations and reflections) to the grid representation of the surface

function s:

4 -12 4 •

-8 20 -12 21
For elements along an outside row of the grid, more than one point removed from any corner, apply

the following stencil (or its appropriate rotations and reflections) to the grid representation of the

surface function s: r 2 1
[ 4 -12 4 •

.2 -12 22 -12 2J

For elements along a row second from the outside of the grid, located one element from each of

two outside rows, apply the following stencil (or its appropriate rotations and reflections) to the grid

representation of the surface functions:

r 2
1 4 -16 4

-12 36 -16 2

1 -12 4

* For all other elements along a row second from the outside of the grid, apply the following stencil (or

its appropriate rotations and reflections) to the grid representation of the surface function s:

21
4 -16 4

2 16 38 -16 2

4 -12 4 j

Thus, the direction vector has zero valued components at all points corresponding to known

depth values, and non-zero valued components elsewhere, with value given by the result ofconvolv-

ing the above stencils with the current surface approximation. It is interesting to note that the stencil

used in the interior of the grid is a finite difference approximation to the biharmonic equation V 4
8 =

0 jAbramowit/ and Stegun. 1965, p.8851. This should not be surprising, since die Iuler equation,

- '
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derived previously from the calculus of variations, was precisely this equation. Thus, we see that the

quadratic programming algorithms implicitly solve the Euler equation.

We have determined the form of the directuon vector, which specifies the direction in which to

move in order to reduce the objective function and refine the surface approximation. To determine

the amount to move in this direction, it is necessary to determine the minimum value of the objective

function along this direction, that is, to determine the value of a such that

m-2 m- I

+a_i, ) - 2a1,3 .) + at,,+,))

+[ E E- (a(i'j-l) - 2o(ij)' + 8(i''' -)

+a( , ) - .2ad( 3,) -± ado ij+l) )2

m-2 m-2+2 E E (8(,j) - 86+1xj - 8(0 .+l) + 8(,+l,j+,)
i=o j=0

+ad ,j) - ,d(,+,,j) - cA ,j) + ai+Ij+I)

is minimized. A straightforward applicalion of calctilus determines that this value for a is given by the
'Iratio ,f a-= ;- where..
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= "t (Nt-i) - 28(ij) + i+, )

(d(i- 1 ,) - 24,,j) +t(- ,j)

+ Et m - ) - 2 (ix) + 8,(i+t)

ni=O "
(d(1j,3 ) - 2d( i) + ji)

mn-2 mt-2.

+2 (8i 0 - Its,j+1) +Ji1j1

(d.) d Ci+,j) - dQ + + 1'+

and

m-2 m-12 2
a2 E (d'i..'. - 24 l+dq j+ -

* ,i-1 j'~o

+ m-2 ij- 1) - 2d(1,3) + d4a+z))

m-2 m-2 '2
+2 E E (,,Q) - d+i,,) - d,,j+l) + d(i+l,,+l)•

i=-O j*-0

'Ibus, the algorithm is completely determined. ihe steps consist of:

0. Determine a feasible initial surface approximation (any surface approximation which contains the

known stereo depth values c< j) at the known points (i, i) E I will suffice).

1. Compute the gradient of the objective function by convolving the grid representation of the cur-

rent surface approximation with the stencils listed above. Compute the direction vector by taking the

negative of the gradient, setting any components corresponding to known depth points to zero.

2. Compute the scalar a which specifies the amount to move along the direction vector on the

hypcrsurface defined by the objective function, by the formula given above.

3. Refine the surface approximation by incrementing the current surface approximation with the

scaled direction vector.

.................................................................. ..... ~ .;
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4. Return to step (1) and continue until the magnitudes of all components of the direction vector are

smaller than some constant e.

6.3 Examples of Interpolation

We can demonstrate the effectiveness of the surface interpolation algorithm by considering the

performance of the gradient projection algorithm on several examples. Although the previous discus-

sion dealt specifically with applying the gradient projection algorithm to the quadratic variation, a

similar analysis can be performed for other functionals such as the square Laplacian. (Recall that any

feasible functional was a linear combination of these two functionals.)

To demonstrate both the effectiveness of the interpolation algorithm and the difference between

the quadratic variation and the square Laplacian, we consider three synthetic examples in Figures 4-

6. In Figure 4 the interpolation algorithm is given as boundary conditions a set of closed contours

from a cylinder, oriented parallel to the x-axis. It can be seen that the surfaces obtained by minimizing

the square Laplacian and the quadratic variation differ markedly along the edge of the region. This

is to be expected for two reasons. In Section 5, we derived the Euler equations for the interpolation

problem, a set of differential equations which must be satisfied by the minimal surface. The Euler

equations for the interior of a region were identical for both the square Laplacian and the quadratic

variation, namely the biharmonic equation. Along the edges of the region, however, the natural

boundary conditions imposed different equations on the solution surface. This fact is reflected in

Figure 4. The second reason for the different surfaces arises from the form of the stencils obtained

in Section 6.2. The stencils to be applied at the edges of a region in the case of quadratic variation

are numerically more stable than those to be applied in the case of the square Laplacian. (This may,

in fact, simply be a reflection of the difference in Euler equations.) In either case, it can be seen

from Figure 4 that while minimizing the quadratic variation results in a reasonable approximation to a

cylinder, minimizing the square Laplacian yields less acceptable results.

In Figure 5, we illustrate a second synthetic example. In this case, the boundary conditions are

points lying on a hyperbolic paraboloid, choosen at random so that the known points do not form

closed contours. As in the previous case, it can be seen that while the surfaces obtained by minimizing

the two functionals are very similar in the interior of the region, the surfaces differ drastically along

,V4
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EXAMPLES OF INTERPOLATION 46

Figure 4. Synthetic Example. The top figure shows a synthetic set of boundary conditions.
colnitenft with a cylinder aligned with the axes of the -grid. The middle figure shows the surface
obtained by applying the gradient projection algoi tlim to the square Laptacian functkioal. The
bottomt figure shows the surface obtained by applying the algorithm to the quadratic variation.
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Figure 5. Synthetic Example. The top figure shows a synthetic set of boundary conditions, consistent
with a hyperbolic paraboloid. The points are chosen at random with a density of 10 percent.
The middle figure shows the surface obtained by applying the gradient projection algorithm to
the square LUplacian functional. The bottom figure shows the surface obtained by applying the
algorithm to the quadratic variation.

4," " . ., .,- ,
4-I
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Figure 6. Synthetic [xample. The top figure shows ai synthetic set of' boundairy conditions.
consistent with a cylinder not dignedl with the axes of the grid. *Ihe middlc figure shows the
surface oblined I~iy ap~plying the gradient projud ion akcorithrnl to the square Laplacian functional.
Ihe botloni figure shows the surfatce obtained by applying the algorithmn to the quadratic v'arition.
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the edges of the region. Again, minimizing the quadratic variation yields a reasonable approximation

to a hyperbolic paraboloid.

In Figure 6. we illustrate a third synthetic example. In this case, the boundary conditions are

again taken from a cylinder, here oriented at 45 degrees to the z-axis. As in the previous cylinder

example, the major difference between the two surfaces occurs along the borders of the region and the

minimization of quadratic variation yields a good approximation to the cylinder.

The interpolation algorithm was developed to account for the creation of complete surface

descriptions from the sparse surface information provided by visual modules such as stereo. We can

demonstrate the effectiveness of the interpolation theory by applying the algorithm to different stereo

examples. In Figures 7-10, we illustrate the results of applying the surface interpolation algorithm

. i to the output of the Grimson implementation [Grimson, 1981a, 1981b] of the Marr-Poggio stereo

theory [Marr and Poggio, 1979] applied to a pair of stereo images. It should be noted that in these ex-

amples the interpolation algorithm was applied directly to the disparity values obtained by the stereo

algorithm, without converting them to depth information. As a consequence, the displayed surfaces

in the figures will not exactly reflect the shape of the surface, since an additional nonlinear transfor-

mation from disparity to depth is still required. For the purposes of illustrating the interpolation

algorithm, however, the use of interpolated disparity values suffices, since the interpolation algorithm

will preserve the general shape of the surfaces (that is, the sign of the surface curvature) as well as the

relative differences in depth between different surfaces.

Figure 7 shows four stereo pairs of images, on which the algorithm was tested. Figure 8 shows

the surface obtained for a wedding cake random dot stereogram. The four planar surfaces are clearly

visible, although the effect of a small number of incorrect disparity values at the junctions of adjacent

"4 planes can be seen. Figure 9 shows the surface obtained for a spiral staircase random dot stereogram.

Again, while the general shape of the spiral staircase is clearly apparent, the effect of a small number

of incorrect disparity values can be seen. Figure 10 shows the surface obtained for the natural image

of a coffee jar. As in the previous cases, the general shape of the surfaces are clearly evident. Not

only is the jar sharply separated in disparity from the background plane (which is slightly slanted), but

the overall shape ol' the jar can he distinguished. Figure 11 shows the surface obtained for the natural

image of the Moore sculpture. As in the case of .igure 10, the gcneral shape of the surfaice can be
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Figure 8. The Wedding Cake. The figure shows the surfice obtained by processing the stereo
pair with the Grimson implementation of the Marr-Poggio stereo algorithm. and interpolating the
result using the quadratic variation.
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igure 9. The Spiral Staircase. The figure shows the sur-face obtained by processing the stereo
pair with the Grimson imiplementation of the Marr-Pogio stereo algorithm, and interpolating the
result using the quadratic variation.



Fi).,ure 10. 'I'hc Cofce Jr. ]'he figu~res shmv two i-,s of the slitface oh~ainid Iv processng Oie
Ntkico paiir of'I Fitire 7 v. Ilt the ( iiiioi iiop I'IcIt:iiion of' the Matrr-Po rgio -,teco Aikgjhtn
and micip)(latiiig (lie rcsult using thecitiadi atic uariation.
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'*11

Figure IL. The Moo~re Sculpture. The figure shows a view of the surface obtained by processing
the stereo pair of Figuie 7 with the Girinison imnpleentation or the Marr.Pugiio stereo algorithm.
and interpolating the result using the quadratic variation.
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distinguished. Note that because no disparity values can be obtained for the hole in the center of the

sculpture, the interpolation algorithm interpolates across the hole as if it were a uniform surface.

6.4 The Conjugate Gradient Approximation Algorithm

Previous sections have addressed the case of interpolating a surface through the known stereo

depth values. In this section, the case of approximating a surface relative to the known stereo depth

values is considered. There are several reasons for considering an approximation of the known depth

values, rather than an exact fit through them. The first reason is that the accuracy of the stereo data

may not be sufficient for the purpose of surface approximation. In particular, the algorithm outlined

for performing the stereo computation yields disparity matches with an accuracy of one picture ele-

ment. One must consider if such accuracy is sufficient. As well, one must consider the accuracy

with which the zero-crossing positions reflect the location of a point of interest on an object in the

scene. Since the operators which extract the zero-crossings have a non-infinitesimal spatial extent, it

is possible that the zero-crossing positions undergo slight fluctuations in position, such fluctuations

causing a small error in the disparity matches assigned by the algorithm. The second reason is that

the stereo algorithm does occasionally make an incorrect match If an exact surface interpolation is

required, such points will incorrectly cause a change in the shape of the surface, and the effect of

such points can spread over a noticeable region of the surface reconstruction. By requiring a surface

approximation, the effect of such "bad" disparity points can be minimized.

The basic notion is to combine a measure of "nearness of fit to the known points" with

a measure of the consistency of the surface with the zero-crossing information. This can be ac-

complished by considering a penalty method unconstrained optimization problem. Here, the objec-

tive function to minimize is

e~~~s) + J 8a ±eJ + 2sa,) dxdyj + #3 E (8(zy ~,~)II(I

where the summation takes place over the set I of all points in the representation for which there is a

known stereo depth value c(z, V). The effect of this objective function is to minimize a least-squares

fit through the known points, scaled relative to the original minimization problem. Ihe constant P

is a scale parameter to be determined by the degree of desired fit. Note that the constraints have, In

this case, been incorporated directly into the objective function. I fence, the objective function may be

optirni7ed as if it were an tinconstrained function.

-t
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The translation of this problem into the image domain yields the following discrete version of

the objective function:

,.-2 m- 1 -~j/ q .,'2

minimize (8,1j) 28,j) +

m- 2 2

+~h (oi_1 - 1 j + sti+ ))

+2m-2 m-2 )

i=O j-0

It is now possible to consider applying the conjugate gradient method to this problem. Recall

that this method, when applied to the quadratic case, is considered the minimization of

I TQS~hs

In this case, the vector b is given by

b = -2#c

where c is a vector whose components are the known depth values c(j) if the corresponding grid

point has such a known value, and 0 otherwise. The matrix Q is given by the discrete stencils outlined

N4 in the previous section, with an added diagonal factor of by. One can then straightforwardly apply the

conjugate gradient algorithm, with these forms for b and Q.

6.5 Examples of Approximation

The conjugate gradient algorithm, applied to the surface approximation problem, is

demonstrated by considering a series of examples, illustrated in Figures 12-16. These should be com-

pared to Figures 8-11. As in the case of surface interpolation, the surface approximation algorithm

has been applied to disparity values rather than depth information. Again, the general shape of the

surface and the relative difference in positions of the surfaces have been preserved by the algorithm,

although the exact surface shape has not been reconstructed.



4

57

The objective function of the conjugate gradient algorithm in this case contains two factors,

the quadratic variation of the surface and a least-squares term embodying a type of "smoothness"

requirement. The scalar constantfl determines the relative strengths of these two factors. If we let

(3 be very small, then the smoothness requirement essentially vanishes and we return to the case of

surface interpolation, discussed previously. The conjugate gradient algorithm then becomes identical

to the gradient projection algorithm. If we let 13 become very large, then the quadratic variation factor

essentially vanishes and the algorithm reduces to a least-squares fitting of a plane to the known points.

Clearly, we require a value of 6 intermediate to these extreme cases. The figures illustrate this tradeoff

between the two factors, as 1 varies. To determine the optimal value for 3, we require an estimate for

the density of incorrect disparity values obtained by the stereo algorithm, so that a value for /P may

be chosen which smooths out the effect of these incorrect values, while not affecting the shape of the

surface determined by minimizing the quadratic variation.

7. Analysis and Refinements

7.1 Discontinuities

One of the implicit assumptions of the interpolation algorithm is that the pieces of surface are

in fact pieces of a single surface. Of course, this will frequently not be the case. In this section, we

consider what modificiations are necessary in order to account for the existence of several surfaces

within a scene. In particular, we address the issue of explicitly computing discontinuities in the surface

representation, and the effects of explicit discontinuities on the form of the reconstructed surface. ,

One of the problems associated with the failure to make surface discontinuities explicit is that

information about the shape of one surface affects the shape'of an adjacent surface. This is illustrated

in Figure 17. A set of known depth points is given in Figure 17(a). Intuitively, the most likely

surface to fit through these points would be a pair of planes with a discontinuity in depth between

them, shown in Figure 17(b). However, the requircmcnt that a smooth surface fit through these points

results in a warping and rippling of the surface that is undesirable, as shown in Figure 17(c). Tlhus,

the lack of explicit discontinuities can affect the shapcs of the interpolated surfaces in an unacceptable

manner.

II
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.4

Figure 12. The Wedding Cake. The figures show surfaces obtlified byv approxinmating the surface
using qluadratic variation. TIe scalal constant relating the least squares'lerm to the qundrAitic term
is I in the top figure and p=0.1 in the btl(om figure.
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Figure 13. The Spiral Si.wircase. The figures show suirfaces obtained by approximating Cie surtae
u%ing qu;adraI ic variation. Ilhe scalar constant relating the least squares term to the quixtratic leln
is (i=I in the lop figiuc and 0. = 0.1 in the bottom figure.
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I ipure 14. T he Cofree Jair. Thie figures sho% two view,, of' a surfacc obneidifI bv aIpproxsimating
(III illrl'. tv liing qtufIdl ic Utrilil F e -Cdair conlhlal) relai ig the ItastN JI,Ipa(: v:. j to I1( the0
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FigUIii 15. The Coflece Jar. ThC figures -Jhow two views of a surface ohiaincd by app.-xirnating
die rnirf.ICI' using tluadraic vaiiation. Ilhe scalar constant relalivir die least squares lerin (o the
quadratic lerm is ~i0.01.
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In order to make discontinuities explicit. there are several questions to ask about the process.

How arc the discontinuities detected? Where are they placed in the representation? When does the

detection of discontinuities take place in the overall interpolation process? In the next few sections,

we will discuss two possible methods for detecting the discontinuities, and their role in the overall

interpolation.

7.1.1 Occlusions in the Stereo Algorithm

4 Consider the geometry indicated in Figure 18. There are regions of the left image which will not

have a corresponding region in the right image, and vice versa. Consequently, any zero-crossings in

this portion of one image will have no counterpart in the other image, and the stereo algorithm should

not assign any match to such zero-crossings. Hence, one possible mechanism for detecting occlusions

would be to search for portions of the image which contain unmatched zero-crossings. Then, the

interpolation can be restricted to take place only over those sections of the image which are bounded

by zero-crossings with known disparity values.

This method would detect the discontinuities before the interpolation, since it uses stereo in-

formation directly to locate the occlusions. A problem with the method is that it will not detect

all discontinuities, only those in the horizontal direction. Discontinuities that occur in the vertical

direction do not cause occlusions. Hence, any method for detecting discontinuities which relies only

on the unmatched zero-crossings will be incomplete.

7.1.2 The Primal Sketch Revisited

An integral part of most computational theories, proposed as models of aspects of the human

visual system, is the use of computational constraints based on assumptions about the physical world

[Marr, 1976, 1980; Marr and Poggio, 1979; Marr and Hildreth, 1980; UlIman, 19791. In some of the

computational theories, the constraints are explicitly checked for validity within the algorithm (e.g.

Ullman's rigidity constraint in recovering structure from motion). In others, the constraints are simply

assumed to be true, and are not explicitly checked (e.g. Marr and Poggio's uniqueness constraint in

stereopsis). Can any aspect of the surface consistency constraint be explicitly checked and used by the

algorithm?

1le basic notion of the surface consistency constraint is that the surface cannot undergo a radi-

cal change in shape without having an accompanying ier-crossing in die convolved image. Implicit

.i
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Figure 18. Occlusions. The upper surface occludes portions of the lower surface in each eye.
These portions are different for the two eyes. The cross-hatched area of the lower surface indicates
the region of the surface visible to the left eye, but not to the right.

in this constraint is the assumption that the portion of the image being examined in fact corresponds

to a single object. 'Thus, one could propose that if the shape of the interpolated surface forces a zero-

crossing in a location for which none exists in the Primal Sketch, then such a zero-crossing indicates

a location at which the assumption of a single object is violated. Such zero-crossings could then be

taken as indicative of a surface discontinuity.

Perhaps the simplest method of detecting such discontintuities is again to use ideas inherent in

the Primal Sketch. Recall that the Primal Sketch created descriptions of points in the image associated

with inflections in intensity, for a range of resolutions. Since the image intensities may be considered

as a type of three-dimensional surface, the Primal Sketch operators essentially detect discontinuities

in the image intensities for a range of resolutions. Thus, one could apply the same type of analysis

to the detection of surface discontinuities, where now die surface on which the operators apply is the

reconstructed depth surface, rather than the intensity surface.

-& i i l I I I II 1 1 "' -,- . .' ..
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It is worth noting that not only should the operators be of the form used in the extraction

of the Primal Sketch, but that it may also be useful to use a range of operators, as in the Primal

Sketch. One reason for using multiple zero-crossing detectors was that surface changes, and hence

intensity changes, could take place over a wide range of scples. This is still true in the case of

surface descriptions, such as have been constructed for the coffee jar or the wedding cake. Thus,

surface discontinuities corresponding to occluding edges will frequently tend to correspond to large

surface changes, while internal surface discontinuities, due to a warping of the surface, will tend

to correspond to small surface changes. By using a range of V2G operators, one can extract both

occluding contour discontinuities, as well as ripples or warpings of the surface itself.

Note that this method requires that the surface interpolation already take place, before it can be

applied. Since one of the general requirements on an algorithm is that it be rapid, we must consider

the consequence of detecting discontinuities after the interpolation of the surfaces. There are two

main reasons for the explicit detection of discontinuities. One is that such an explicit representation

of this information will allow higher level processes, such as recognition, or extraction of axes for

three-dimensional shape analysis, to operate more easily, since the process serves to make implicit

information explicit. However, a second reason is to create more accurate surface representations, by

removing the type of effect illustrated in Figure 17(c). If the process used to isolate discontinuities

takes place after interpolation, and if the interpolation process requires the discontinuities to improve

the interpolated surface approximation, one must propose an interpolater which passes over the sur-

face information twice; first to produce an initial description, and second to refine the description

after the detection of discontinuities. One must then question whether such a two pass process will

affect our constraint of rapid algorithms. Fortunately, the answer is no, since the surface approxima-

don obtained without explicitly accounting for the discontinuities is very close to the limiting surface

except in the areas of the discontinuities (that is, any effects of the discontinuities are quickly damped

out as one moves across the surface). Thus, the initial starting position for the second pass of the

interpolation algorithm is very close to the limiting surface, and only a few iterations will be needed to

refine the surface approximation.
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7.1.3 Interpolation Over Occluded Regions

Even though occluded regions of the image can only be viewed from one eye, the human system

still associates a depth value with these regions. This has an interesting implication for the interpola-

tion algorithm. For most occluded regions, the only depth information available is at the edges of the

occluded region. Psychophysical experiments have shown that the occluded region is always perceived

at the depth of the lower surface. Thus, in Figure 18, the occluded region would be perceived at the

level of the lower surface. Note that this is consistent with the physics of the situation, since if the

occluded region were perceived at the level of the upper surface, then it should in fact be visible to the

right eye, and this is not the case.

This observation suggests that when an occlusion is detected, it is explicitly located along the

occluding boundary corresponding to the edge of the nearer object. This allows the occluded region

itself to be associated with the lower surface, and the interpolation algorithm will fill in surface values

for the occluded region from this lower surface.

This raises an interesting psychophysical prediction. The psychophysical literature has examined

the case of planar surfaces and their occlusions, as in Figure 18. If the interpolation method developed

here is given an explicit discontinuity along one edge of the occluded region, it will correctly fill in

the region as an extension of the lower plane. Of interest is the case in which the occluded region is

not planar. For example, consider a cylindrical object. If the interpolation algorithm is given this type

of input, it will fill in the occluded portions of the surfaces as a smooth continuation of the curved

cylinder. If the interpolation algorithm correctly models interpolation by the human visual system,

then this predicts that the surface perception for human observers in this situation should also be that

of a smooth cylinder, While informal experiments indicate that this is true, the prediction has not yet

been rigourously tested psychophysically.

7.2 Noise Removal

Although in general the Marr-Poggio stereo algorithm is very good at matching zero-crossings

correctly (especially for random dot patterns), incorrect disparity values may sometimes be assigned to

regions of the image. 'Iliese incorrect values can be considered as noise superimposed on the correct

surfice. Since the surface interpolator explicitly attempts to fit a surface through all the disparity

points, such noise points can affect the shape of the surface approximation. Indeed, the effect ofthese

" - I' . .. . .. .'" , . .. . . . . . . , ' ' :1 - .
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noise points can spread over a noticeable portion of the surface, before the nearby disparity values can

damp out its effect. Thus, it would be preferable to remove these noise points, or at least neutralize

their effect on the approximated surface shape. One possibility is that if a two pass interpolator is

used, as suggested in the previous section, the detection of surface discontinuities will isolate such

noise points from the rest of the surface, andthe second pass of the interpolator will adjust the surface

approximation to remove the influence of the noise points on the first pass approximation. Certainly

this will be true for noise points with disparity values far removed from the correct values. For

noise points whose disparity values are only slightly different from the correct surface disparities, the

difference does not really matter. However, the final result would be that the noise points, while being

isolated from the rest of the correct surface, would still remain in the final surface description. It

would be preferable to completely remove such points.

Is it possible to identify and remove noise points from the disparity map? If the noise points are

isolated spatially, then it is possible to identify them as undesirable. This follows from the form of the

primal sketch operators. The case to consider is that in which one must distinguish between a set of

noise points in a disparity map and a small object separated in depth from the rest of the scene. For

the small object, the size of the zero-crossing contour is limited by the size of the available operator,

and hence there is a minimum size of zero-crossing contour which the operator will yield about the

object. If the number of zero-crossing points which differ significantly from their neighbors is less

than this minimum, one may conclude that the points are noise, and thus remove them. This will

result in an improved surface approximation.

7.3 Acuity

It can be seen from the example of the interpolated coffee jar in Figure 10, that the interpolated

surface contains a bumpy quality which clearly is not consistent with the original object. How can

this be explained? The effect occurs in part because the disparity values are specified only to within a

pixel. 'bis yields a fairly coarse disparity map which results in the bumps observed in the interpolated

coffee jar of Figures 14 and 15. Hence, one method of removing the bumps would be to improve

the accuracy of the disparities obtained by the algorithm. Note that some improvement in disparity

accuracy is necessary if the algorithm is to be consistent with the human system. If we roughly equate

pixels ,vith receptors, then a pixel corresponds to roughly 27 seconds of arc. 'The implementation of



S69

the stereo algorithm computed disparity to within a pixel, while humans are capable of stereo acuity

to a resolution of 2 - 10 seconds [Howard, 1919; Woodburne, 1934; Berry, 1948; Tyler, 19771.

In order to account for finer disparity values, it is necessary to localize the zero-crossing to a bet-

ter accuracy than has been done so far. Since the convolution values are only specified at each pixel,

one method for more accurately specifying the zero-crossing positions is to interpolate between the

known convolution values [Crick, Marr and Poggio 1980, Marr, Poggio and Hildreth 1979, Hildreth

1980. Perhaps the simplest method is to rely on the observation of Hildreth that for most cases,

even a simple linear interpolation will give extremely accurate localization of the zero-crossings. The

addition of finer resolution depth information may improve the performance of the algorithm.

This example also raises a question of scale. Depending on the application of the surface

specification, different amounts of resolution may be required. For example, if the ultimate goal of

the surface specification is to obtain a rough idea of the position and shape of the surfaces in a scene,

the spatial resolution at which surface information must be made explicit may not be critical. In this

case, the known data from the stereo algorithm may be sampled at a coarser resolution, before the

interpolation takes place. This should result in a smoother surface approximation. Further, although

the reconstructed surface is less exact in terms of fine variation of the surface shape, the overall shape
-U I

of the bottle is still preserved in this interpolation.

7.4 Psychophysics

We close by listing a series of psychophysical questions of relevance to the interpolation process.

(I) What is the form of the surface perceived in occluded regions? In particular, the minimization of

quadratic variation suggests that if a portion of a curved object is occluded, then the surface in

the occluded region should also be curved, and should minimize the quadratic variation across

that region.

(2) Figure 17 suggests that if discontinuities are not explicitly demarked in the interpolation

process, a warping of the reconstructed surface (similar to Gibb's phenomena) will result.

While, in principle, such ripples in the surface are undesirable, it is worth asking whether the

human system specifically accounts for discontinuities before interpolation occurs. This may be

rephrased by asking whether in stereoscopic situations similar to Figure 17, we perceive a Mach

band-like warping of the surface in depth?

-i ow
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(3) We have suggested that there are several possible functionals which could be used to determine

the most consistent surface. Based on algorithmic and mathematical arguments, we choose the

quadratic variation. Can we test the shape of the reconstructed surface psychophysically? In

particular, can we distinguish psychophysically between the minimum surface under quadratic

variation and the minimum surface under some other functional, such as the square Laplacian?

4 Is the reconstructed surface psychophysically consistent with the iurface computed by quadratic

variation?

(4) What is the spatial resolution of the reconstructed surface? That is, what is the spacing of the

grid upon which the values of the reconstructed surface are computed?

The answers to these questions will help verify or correct the theory of visual surface interpola-

tion developed in this paper.

8. Summary

Computational theories of motion perception [Ullman, 1979) and stereo vision fMarr and

Poggio, 19791 can only specify the computation of three-dimensional surface information at special

points in the image. In order to account for the visual perception of complete surfaces, we have

developed a computational theory of the interpolation of surfaces from visual information.

The problem is constrained by the fact that the surface must agree with the information from

stereo or motion correspondence, and not vary radically between these points. In Grimson 11981e], an

explicit form of this surface consistency constraint is derived from the image intensity equation [Horn,

19751. The main point of the surface consistency constraint is that it requires the interpolated surface

to vary as little as possible.

To determine whiich of two possible surfaces is more consistent with the surface consistency

constraint, one must be able to compare the two surfaces. To do this, a functional from the space

of functions to the real numbers is required, where the functional should measure some function of

the variation in the surface. In this way, the surface most consistent with the visual information will

be that which minimizes the functional. To ensure that the functional has a unique minimal surface,

conditions on the form of the functional arc derived. In particular, if the functional is a complete

semi-norm which satisfies the parallelogram law, or the space of functions is a semi-Hilbert spare and

I0
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the functional is a semi-inner product, then there is a unique (to within an element of the null space of

the functional) surface which is most consistent with the visual information.

It can be shown, based on the above conditions plus a condition of rotational symmetry, that

there is a vector space of possible functionals which measure surface consistency, this vector space

being spanned by the functional of quadrati variation and the functional of square Laplacian (Brady

and Horn, 1981). Arguments based on the null spaces of the respective functionals were used to justify

the choice of the quadratic variation as the optimal functional.

Algorithms for computing the surface which minimizes quadratic variation in the case of exact

surface interpolation and in the case of surface approximation were outlined and illustrated on a series

of synthetic and actual surface interpolation examples.
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